
International Journal of Scientific & Engineering Research Volume 2, Issue 11, November-2011 1

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

 A Stochastic Simulation of Optimized Access
Strategies for a Distributed Database Design

 Rajinder Singh, Gurvinder Singh, Varinder Pannu virk

Abstract—This paper highlights a design of a probabilistic solution to the operation allocation problem of Distributed Databases. Most of

the present day commercial vendors of Distributed DBMS use deterministic procedures along with certain heuristics on exhaustive

enumeration procedures like Dynamic Programming, Greedy Techniques, Randomized strategies etc. These procedures have a lot of

scope for improvements when problem domain is increased from the point of view of ‘number of sites’ or ‘number of joins’ involved in a

distributed query. Recently great interest has been shown by researchers to apply Genetic Algorithms to achieve this. This paper highlights

design and implementation of one such model, Genetic Algorithm for Subquery Allocation (GA_SA), which is a modest effort to

stochastically simulate optimization of retrieval transactions for a distributed query.

Index Terms— Stochastic Simulation, Genetic Algorithms, Distributed Database, Access Strategies, Query Optimization, Fragments, sub-

query operation, Computer Network, Random Number Generation, Query Tree.

——————————  ——————————

1 INTRODUCTION

NE of the important key components of a distributed
database query processing & optimization process is the
allocation of the sites of a network to various operations

or sub-queries involved in a particular Query. A distributed
query is first broken into various sub operations like Selec-
tions/Projection or Joins/Semi-joins, then these operations
may be performed at many different sites of the network in
many different sequences. These two components of the dis-
tributed query optimization process are popularly referred as
Operation Order Sequence Problem (OSP) & Operation alloca-
tion Problem (OAP). OSP involves finding the optimal order-
ing of operations e.g. Join order sequence.OAP involves find-
ing the optimal placement of these operations to different
permutations of network sites. Both of them are proven to be
NP Complete and NP Hard problems while trying to find an
optimal solution for a combination of large number of sites
and operations [1]. For this reason one prefers a stochastic so-
lution over deterministic ones. Because enumerative and de-
terministic procedures go intractable quite quickly as soon as
the number of sites or number of complex operations like joins
are increased. So this has been an active area of research for
database community since last few decades and the hunt for
better techniques or heuristics is still actively pursued [2].
 In this paper focus is on sub-query operation alloca-
tion problem. An innovative Genetic Algorithm (GA_SA) is
proposed as a solution and a stochastic simulator is designed
based on this algorithm. Paper is organized as follows. Section
2 discusses various prevalent techniques and earlier research
in the area. Section 3-5 describe step by step, all the details of
the genetic algorithm and simulator‘s design like Query repre-
sentation by Query Tree, mathematical formulation of the ob-
jective function, Data File Design, Flowchart of GA_SA, Genet-
ic Algorithm and Graphical Analysis.

————————————————

 Rajinder Singh, Gurvinder Singh are working as Associate Professor at Guru
Nanak Dev University, Amritsar, India. E-mail: tovirk@yahoo.com.

 Varinder Pannu Virk is a Sr. Lecturer at Govt. Polytechnic Amritsar,India.E-
mail: viki_virk@yahoo.com

Finally in section 6 we analyze and validate the solution by
taking a set of Queries on a Winconsin Benchmark Database
and comparing the GA_SA costs and execution times with
other widely followed methods like Exhaustive Enumeration,
Dynamic Programming, Branch & Bound and Simulated An-
nealing etc. Due to the NP-Hard nature of the problem, there
are no standard benchmarks for comparing efficiency of dis-
tributed database design and query optimization algorithm
variants. So, to validate the results of the proposed genetic
solution GA_SA, some of above stated approaches have been
compared by using benchmark analysis & results from the
classic works of Martin & Lam [4], other good comparisons are
available in [5], [6], and [7].

2 PREVIOUS RESEARCH ON SITE ALLOCATION

TECHHNIQUES :

2.1 Introduction:
Research activities in this field can be broadly divided into
following three categories, which have been extensively elabo-
rated and compared in earlier works of [8],[9],[10],and [11].

a) Deterministic techniques: Exhaustive Enumeration with

heuristics (Dynamic Programming), Branch & Bound,
Greedy, Iterative Dynamic Programming.

b) Randomized Techniques: Iterative Improvement, Simu-

lated Annealing, 2PO (Two phase Optimization).

c) Evolutionary Techniques: Genetic Algorithms, Multi ob-
jective Genetic Programming.

2.2 Exhaustive Enumeration

It is the most primitive technique, when used along some heu-
ristics to prune suboptimal plans is then called Dynamic Pro-
gramming Technique. This was the first approach in System R
project of IBM and was later used for query optimization by
most of DBMS vendors. Working in a bottom-up fashion it

O

International Journal of Scientific & Engineering Research Volume 2, Issue 11, November-2011 2

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

builds more complex sub-plans from earlier simple sub-plans
until the completion of Plan. Access plans are build for every
relation in the first phase and then algorithm enumerates all
two way join plans using access plans as building blocks in the
second phase. Third phase (finalizePlans) finalizes the plans by
attaching the operations to make a complete plan. The func-
tion prunePlans helps in discarding suboptimal plans as early
as possible. A brief outline of the general procedure is given
below in figure 2.1.Distributed version does table scans at dif-
ferent sites and plan pruning is postponed till covering all
sites.

 Input: SPJ query q on Relations R1,R2,…, Rn.

 Output: A query plan for q
 for i=1 to n do
 optPlan ({RI}) = accessPlans(Ri)
 prunePlan(optPlan ({RI}))
 endfor
 for i=2 to n do
 for all S { R1,R2,…, Rn. } and = I do
 optPlan(S) =
 for all O do
 optPlan(S) = opPlan(S) joinPlans
 (optPlan(O), optPlan(S-O))
 prunePlans (optPlan(S))
 endfor
 endfor
 endfor
 finalizePlans(optPlan({ R1,R2,…, Rn })
 prunePlans(optPlan({ R1,R2,…, Rn })
 return(optPlan({ R1,R2,…, Rn })

Figure 2.1DynamicProgramming Algorithm

Dynamic programming outperforms other techniques for a
small number of relations and fragments on different sites,up
to 2-5 relations having 7-12 fragments on 3-5 sites. Beyond this
when we suddenly increase number of fragments and sites, its
computing time rises exponentially and soon goes practically
intractable.

2.3 Branch & Bound

It represents allocation program by considering a search tree.
Sub queries are represented by nodes and arcs give allocation
of sites to these subqueries. Branch & Bound operates in depth
first search of search tree and terminates a search path if it
finds objective cost function exceeding the current minimum
cost for a complete function [13].This algorithm is highlighted
in Figure.2.2.
Generate initial random allocation A0

 Cost(A0)

 and
 Randomly choose first
 Call Branch&Bound (A, C, U, i, M).
 Branch&Bound (A, C, U, i, M)
 for each j do
 if CapUsed + CapRequired(i) MaxCap(j) and
 J SiteSet(i) then do

 .
 If

 If

 return.
 end.
 else do
 Randomly choose new
 Call Branch&Bound (A, C, U, i , M).
 end.
 end.
 end.
 end.
 end Branch&Bound.

 Figure 2.2: Branch&Bound Algorithm

The variable A0 corresponds to an initial allocation of the sub-
queries uses to denote initial upper bound for the cost given
by U. denote costs, A denotes current partial allocation
and M denotes current minimum cost allocation, both are
empty initially. denote nodes and j denotes a site whereas
SiteSet(i) .The function CapRequired(i) returns the amount of
capacity required by a site to be able to solve that query. The
function returns cange of cost effected by alternating
site i and j. The function Allocate(i,j) does allocation of site j for
subquery i . Cost associated with an allocation plan A is given
by Cost(A) [4].
 B&B is a recursive procedure which allocates various
different sites to all possible allocation enumerations, while
keeping watch over restriction that cost does not increase over
the current minimum. Then all possible enumerations from
that point onwards are discarded. Its search space is shortened
very effectively by this bounding function. It takes quite less
time to find the minimal cost allocation as compared to Ex-
haustive Enumeration

2.3 Simulated Annealing

Simulated Annealing is a process analogous to the annealing
of crystals, in which liquids are cooled very slowly at tempera-
tures nearing freezing point. Physical Annealing searches the
space of all possible atomic arrangements for the state with a
minimum possible energy. In general Optimization each state
is replaced by a possible solution to the problem and energy is
replaced by the cost of a suggested solution [4].
It is refinement of an earlier randomized algorithm Iterative
Improvement which suffered from premature findings of local
cost minima, instead of finding a global minimum. This is
achieved by allowing both downhill and uphill state changes,
i.e. it allows the cost function to decrease as well as in-
crease. The probability is set to

, where is the differ-

ence in cost in the source and destination. It is highlighted in
Figure.2.3.
 Calculate T0 and
 Generate a Random Initial Allocation A0

International Journal of Scientific & Engineering Research Volume 2, Issue 11, November-2011 3

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

 Calculate C (A0)
 and A A0
 while T T0
 while (P < k1 x |N|) and (R < k2 x |N|)
 do
 Generate a new Allocation
 Calculate

 if

 then
 else
 end.

 end.

Figure 2.3: Simulated Annealing Algorithm

3 GENETIC ALGORITHM DESIGN

3.1 Objective function formulation

 Decision Variables and cost model

Simulation starts with designing of a distributed database en-
vironment by assuming a set ‗S‘ of data distribution sites, a set
‗R‘ of relations/fragments stored on those sites and a Set ‗Q‘
representing a set of transactions.
We have assumed for simplicity of design that only retrieval
queries are there. The model can be easily expanded to incor-
porate update queries.
Let a query transaction ‗q‘ for retrieval, be broken into a set of
‗j‘ sub queries on the ‗R‘ set of relations.

(i) Data Allocation Variable Ars :

 Ars = 1 (if site ‗s‘ holds copy of fragment ‗r‘).

 Ars = 0 (if ‗r‘ copy is not available at site‘s‘).

(ii) Variables for site selection for sub query execution Sqys :

 Sqys : (represents sequence of sub query execution

 at various sites in the life time of query).

 Sqys = 1 (subquery ‗y‘ of Query ‗q‘ is done at site‘ s‘).

 Sqys = 0 (otherwise).

(iii) For Join operations a notation is proposed to handle left

previous operation of a join operation (LPO) & right previous

operation of a join(RPO) as following:

 Syv[p]S = 1 (for [p] = 1 for left previous operation of a Join).

 Syv[p]S = 1 (for [p] = 2 for right previous operation of a Join

 Syv[p]S = 0 otherwise.

 (iv) Iqry: represents whether the sub query ‗y‘ of query ‗q‘

references the intermediate relation/fragment ‗r‘.

Iqry = 1 (if the base relation ‗r‘ or intermediate fragment ‗r‘ is

 used by sub query ‗y‘ of ‗q‘ query).

Iqry = 0 otherwise.

v) For use of intermediate Relations by Join Operation

 Iqryv[p] = 1 (for LPO of join ‗y‘).

I qryv[p] = 1 (for RPO of join ‗y‘).

 Iqryv[p] = 0 otherwise.

By making use of above decision variables Operation Alloca-

tion Problem formulation is represented as :

Given (Ars & Iqry) :

 A Transaction Profile, a Data Allocation Scheme

represented by variable Ars, and given Iqry intermediate

relations/fragments is used by sub query y of query q .

To find (Sqys):

 We have an objective Function to calculate as to find

Sqys which minimizes the objective function, which is cost of

query.

3.2 COST MODEL FORMULATION

 Given a set of fragments R = {r1,r2,…,rn}

 Given a network of sites S = {s1,s2,…,sm}

Given a set of sub queries Q = {q1,q2,…,qq}

Sub Query Allocation optimization problem involves finding

the ―minimum query cost‖ possible distribution of R to S.

Ceri[12] gives a model for Total cost as Total Cost Function

having two components: query processing and storage cost as

 TOC = ∑ QPCi + ∑vs€S∑ vfj€F STCjk

Where QPCi is query processing cost of application qi and

STCjk is the cost of storing fragment Fj at site Sk.

We follow and modify this model of query cost as function of

sum of local processing costs and transmission costs .We sim-

plify it further by ignoring update costs and ignoring concur-

rency control costs as we are giving model for retrieval trans-

actions(queries) only. Further concurrent retrievals don‘t im-

pose any more integrity control costs. Ceri's formulation gives

QPCi = LPCi + TCi (LPC: Local Processing Cost)

 (TC : Communication Cost)

 3.3 Local Processing Costs

For Simple selection & projections

LPCqy = ∑s Sqys(I OCs ∑r IqryMqry + CPCs ∑r IqryMqry)

 (1)

Where Mqry = No. of memory blocks of relations ‗r‘ accessed

by sub query ‗y‘ of q.

IOCs = Input Output Cost Coefficient of site s in msec per 8k

bytes

CPCs = CPU Cost coefficient of site s.

So equation (1) represents local processing costs of transform-

ing input relation from disk to memory and CPU time

processing a selection or projection at sites ‗s‘.

Ceri's model didn‘t take care of join costs separately in detail.

For that we have extended his model to add join costs as fol-

lowing.

 Local processing costs for a join

LPCqy = ∑sSqysIOCs∑p∑rpsIqryv[p]Mq ryv[p]

International Journal of Scientific & Engineering Research Volume 2, Issue 11, November-2011 4

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

 2(a)

 +

∑sSqys(IOCs∏rIqryMqry + CPCs∏rIqryMqry) 2(b)

Where ‗ps‘ is Selectivity Factor & is referred as the ratio of

possible different values of a field to the domain of that

field.(0<= ps <=1)

Mryv[p] is the size of intermediate relation

where v[p] represents p=1 for left previous operation of a

join & p=2 for right previous operation of a join.

Equation 2(a) represents

Input Output costs in storing intermediate results of previous

operations to the site of current join operation.

Equation 2(b) represents

 CPU & I/O costs for performing join operations at site ‗s‘.

3.4 Communication Costs:

 These are involved mainly in case of join operations

only as we have assured that selections & projections of re-

trievals are to be done only at sites which hold a copy of those

base relations. Join may be performed at any of possible sites.

COMMqy = ∑p ∑s ∑t Sqyv[p]s * SqytCst (qryv[p]

 Mqryv[p])

Where Cst : is the communication cost coefficient bet -ween

site t and s taken from input data matrix)

 Cst = 0 if (s = t) (i.e. previous operations and join

 operation on same site)

If the final operation is not done at the query destination site

then a communication component is added separately for

sending the final query result to that site.

4 DATABASE STATISTICS:
 We consider a distributed database environment based on a

Winconsin Database Benchmark Query (wq6). Structure of

Tables and few example tuples are shown below:

Table: Bi (i varies from 1 to 7 for 7 Base Tables)

Cardinality: 10,000, Tuple Size: 10 bytes, Table Size: 100 kB

Block Size: 1Kb , Table Size = 100 Blocks , Number_of_sites =

3

4.1 Relation Bi

Winconsin Database Benchmark Query (wq6).

4.2 Query: wq6:

 Unique(2<Tens<9)B1):Х: Unique(2<Tens<9)B2):Х: Unique(2<Tens<9)B3)
:Х: Unique(2<Tens<9)B4) :Х:(Unique(2<Tens<9)B5):Х: Unique<Tens<9)B6)
:Х: Unique (2<Tens<9)B7).

Fig: 4.1:Query Tree for WQ6 Query

4.3 The Query Tree Description:

No. Of Selections: 7 (O1 – O7)

No. Of Projections: 7 (O8-O14)

No of Joins: 6 (O15 – O20)

No. Of Operations: 10 (O1 – O21) (Tree Nodes)

No. Of Fragments: 27 (Tree Edges)

 4.4. Designing the Input Data File: Wq6.dat

Here we explain some components of the input data file de-
sign to simulate a part of the problem domain.One may start
by a text file line like

 5 27 21 which represents
 Line1: Query Site is site number : 5

 No of Base Relations : 27

 No. Of Operations : 21

1 1 1
Line2: I/O Coefficients of various sites
1 1 1
Line3: CPU Coefficients

Lines 4-6:Communication speeds between various
0 1 1 pairs of sites

Unique

(0– 9999)

Twos

(0 – 1)

Tens

(0-10)

Hundreds

(0 – 99)

FiveHunds

(0 – 499)

Thousands

(0 – 999)

7 0 1 11 4 999

111 1 4 2 3 4

9998 1 9 4 444 111

777 0 3 98 499 45

10,000

Tuples

.......etc

International Journal of Scientific & Engineering Research Volume 2, Issue 11, November-2011 5

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

1 0 1
1 1 0

1 1 0 Lines 7-13: Base Relation Placements on sites
0 0 1 Variable: Ars : Data Allocation Matrix
1 1 0 e.g. This line represents that Relation
0 0 1 B3 is available at sites S1 & S2
1 1 0
0 1 1
1 0 0

100 100 100 100 100 100 100 70 70 70 70 70 70 70 20 20 20 20 20
20 20 40 40 40 40 40 100
(Base & Intermediate Fragment‘s estimated Sizes in
Kb(blocks))

Next 27 lines each representing whether a fragment f (1-27) is
required by an operatio o(o1- o21):

 ------------ Operations --------------->
 1 0
 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 0 1

5. Flowchart for GA_SA Design

Next shown is a flowchart for GA_SA working

In fig.5.1.

 Yes

 Yes

 No

Fig.5.1

F

r

a

g

m

e

n

t

s

-

b

e

i

n

g

-

r

e

f

f

e

r

e

d

Randomly generate Initial Population by generating feas-

ible allocation plans till the initial pool is filled with the

maximum possible number of chromosomes in a popula-

tion

Encode the generated initial population & Evaluate the

Fitness Function Ft(x) for each member and rank and sort

in order of fitness

Probabilistically Select two Parents from the operation

allocation pool

Add the new solution by removing the worst

from poolb

Breeding: Crossover the selected parent solutions and then

Mutate to generate a new solution to operation allocation

pool and calculate its fitness

Is Gen

 < Max_Gen

Is the new solu-

tion fitter than the

worst in parents

pool ?

Discard the
unfit solution

STOP

Print the Fittest solution of the pool

Start

Read Input Data file to set the Distributed Database data

allocation and Network communication parameters

Discard the

unfit solution

STOP

International Journal of Scientific & Engineering Research Volume 2, Issue 11, November-2011 6

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

6. Genetic Algorithm Design:
Pseudo code of the proposed Genetic Algorithm (GA_OA) is as
following:-
Step 1:
(a) Generate ‗n‘ random numbers between integers ‗1‘ and ‗s‘
where ‗s‘ is a integer denoting the maximum no. of sites and ‗n‘
is the number of operations to be performed. Generating one
random possible plan.
(b) Repeat step (a) for the total strength of the initial population.
(c) Evaluate cost of each operation allocation plan using objective
functions.
Step 2:
(a) Iterate through number of generations to be generated.
(b) Probabilistically select using roulette wheel method without
replacement , the parents , with higher than average fitness get-
ting more that one offspring in next generation.
(c) Apply crossover and mutation to produce new child execu-
tion plan
(d) The maximum fit member of the previous generation replace
the worst member of new generation.
(e) Evaluate the various fitness values for the entire generation.
(f) Repeat steps (2a) to (2e) for maximum number of generations.

6. Experimental Results:

We run Genetic Algorithm GA_OA based on optimizing the

earlier described objective function.

A deterministic procedure EXA_ENU is also coded which

enumerates all possible combinations for 21 operation of

query WQ6 to be done at various sites Si . We plot a graph

between varying numbers of sites on x axis to time taken by

computer to find optimal solution in seconds as y axis. It is

also compared with Branch & Bound and Simulated Anneal-

ing Algorithm run times as given in [4], ans is shown in fig 6.1

above.

7 CONCLUSION

In this paper an attempt has been made to highlight the main
components of a stochastic simulation of a distributed query allo-
cation, using Genetic Algorithms. Design of query representation
and input data file to the simulator is explained. Run Time com-
parison of GA_SA with other popular Operation Allocation tech-
niques is done as highlighted in a graph at Fig.6.1. GA_SA is the
best choice possible when ‗number of sites‘ or complex opera-
tions like ‗joins‘ increase. Dynamic Programs or Randomized
techniques like Simulated Annealing take far more time to find a
good solution than a Genetic Solution like GA_SA.

REFERENCES

[1] Garey, M., D.Johnson Computers and Intractability: A Guide to the Theory of

NP completeness, W.H.Freeman, 1979.

[2] M.Tamer,Ozsu,Patrick Valduriez: Principles of Distributed Database Sys-

tems, Dorling Kindersley, 2006.
[3] Douglas W, Cornell and Philip S Yu,‖ On Optimal Site Assignment or Re-

lations in the Distributed Database Environment‖, IEEE Transactionson Soft-
ware Engineering, vol 15, no. -8, Aug-1989.

[4] Martin, Lam, Russel ,‖ An Evaluation Of Site Selection Algorithm For

Distributed Query Processing‖, The Computer Journal,vol33,1990.

[5] Ram NarsimhanNetwork Outputs, with Relationships to Statistical Pattern

Recognition,‖ Neurocomputing—Algorithms, Architectures and Applications, F.

Fogelman-Soulie and J. Herault, eds., NATO ASI Series F68, Berlin: Springer-

Verlag, pp. 227-236, 1989. (Book style with paper title and editor)

[6] March. S .T, Rho. ‖Allocating Data and Operations to Nodes in

distributed Database Design‖ IEEE Transactions on Knowledge and

Data Engineering:pp. 305- 317,7April,1995.

[7] Cosar & Sevinc,‖ An Evolutionary Genetic Algorithm for optimiza-

tion of Distributed Database Queries‖, The Computer Journal, vol.54,

no.5,pp.717-725,2011.

[8] Martin, Lam, Russel ,‖ An Evaluation Of Site Selection Algo-

rithm For Distributed Query Processing‖, The Computer Jour-

nal,vol33,1990.

[9] March. S .T, Rho. ‖ Allocating Data and Operations to Nodes in

distributed Database Design‖ IEEE Transactions on Knowledge

and Data Engineering :pp. 305- 317,7April,1995.

[10] Kossmann D, ―The State of Art in Distributed Query Optimization, ―

ACM Computing Surveys, Sep 2000.

[11] Amol V. Deshpande and Joseph M. Hellerstein,‖ Decoupled Query

Optimizationfor Fedrated Database Systems,‖ A Project Report, Uni-

versityof California Berkeley,April 2001.

[12] Stefano Ceri,Giuseppe Pelagatti,‖Allocation of Operations in Distributed

Database Access,‖ IEEE Transactionson on Computer, vol.C- 31, no. -2, Feb-

19892

[13] P.R.Ma, E.Y.S Lee and M.Tsuchiya, ―A task allocation model for distributed

computing systems,‖ IEEE Transactions on Computers C-31(1),41-47(1982) .

Fig. 6.1. (Simulator ouput for Query: wq6)

It highlights the fact that genetic algorithm takes much less
time to find optimal solution for operation allocation of a distri-
buted query as compared to deterministic exhaustive proce-
dures or Branch&Bound, or Simulated Annealing Techniques.

25 25 25 30 35 40s 45 50 55

40

80

100

180

150

260

320

0

50

100

150

200

250

300

350

400

5 10 15 20 25 30 35 40 45

^

:
T

i

m

e(

S

E

C)

:

-
---- No_of_Nodes --->

EXA_ENU

GA_SA

BB

SA

