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 A Stochastic Simulation of Optimized Access 
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Abstract—This paper highlights a design of a probabilistic solution to the operation allocation problem of Distributed Databases. Most of 

the present day commercial vendors of Distributed DBMS use deterministic procedures along with certain heuristics on exhaustive 

enumeration procedures like Dynamic Programming, Greedy Techniques, Randomized strategies etc. These procedures have a lot of 

scope for improvements when problem domain is increased from the point of view of ‘number of sites’ or ‘number of joins’ involved in a 

distributed query.  Recently great interest has been shown by researchers to apply Genetic Algorithms to achieve this. This paper highlights 

design and implementation of one such model, Genetic Algorithm for Subquery Allocation (GA_SA), which is a modest effort to 

stochastically simulate optimization of retrieval transactions for a distributed query.  

Index Terms— Stochastic Simulation, Genetic Algorithms, Distributed Database, Access Strategies, Query Optimization,  Fragments, sub-

query operation, Computer Network, Random Number Generation, Query Tree.  

——————————      —————————— 

1 INTRODUCTION                                                                     

NE of the important key components of a distributed 
database query processing & optimization process is the 
allocation of the sites of a network to various operations 

or sub-queries involved in a particular Query. A distributed 
query is first broken into various sub operations like Selec-
tions/Projection or Joins/Semi-joins, then these operations 
may be performed at many different sites of the network in 
many different sequences. These two components of the dis-
tributed query optimization process are popularly referred as 
Operation Order Sequence Problem (OSP) & Operation alloca-
tion Problem (OAP). OSP involves finding the optimal order-
ing of operations e.g. Join order sequence.OAP involves find-
ing the optimal placement of these operations to different 
permutations of network sites. Both of them are proven to be 
NP Complete and NP Hard problems while trying to find an 
optimal solution for a combination of large number of sites 
and operations [1]. For this reason one prefers a stochastic so-
lution over deterministic ones. Because enumerative and de-
terministic procedures go intractable quite quickly as soon as 
the number of sites or number of complex operations like joins 
are increased. So this has been an active area of research for 
database community since last few decades and  the hunt for 
better techniques or heuristics is still actively pursued [2].  
 In this paper focus is on sub-query operation alloca-
tion problem. An innovative Genetic Algorithm (GA_SA) is 
proposed as a solution and a stochastic simulator is designed 
based on this algorithm. Paper is organized as follows. Section 
2 discusses various prevalent techniques and earlier research 
in the area. Section 3-5 describe step by step, all the details of 
the genetic algorithm and simulator‘s design like Query repre-
sentation by Query Tree, mathematical formulation of the ob-
jective function, Data File Design, Flowchart of GA_SA, Genet-
ic Algorithm and Graphical Analysis. 
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Finally in section 6 we analyze and validate the solution by 
taking a set of Queries on a Winconsin Benchmark Database 
and comparing the GA_SA costs and execution times with 
other widely followed methods like Exhaustive Enumeration, 
Dynamic Programming, Branch & Bound and Simulated An-
nealing etc. Due to the NP-Hard nature of the problem, there 
are no standard benchmarks for comparing efficiency of dis-
tributed database design and query optimization algorithm 
variants. So, to validate the results of the proposed genetic 
solution GA_SA, some of above stated approaches have been 
compared by using benchmark analysis & results from the 
classic works of Martin & Lam [4], other good comparisons are 
available in [5], [6], and [7]. 

2 PREVIOUS  RESEARCH  ON  SITE ALLOCATION 

TECHHNIQUES  : 

2.1   Introduction: 
Research activities in this field can be broadly divided into 
following three categories, which have been extensively elabo-
rated and compared in earlier works of [8],[9],[10],and [11]. 

 
a) Deterministic techniques: Exhaustive Enumeration with 

heuristics (Dynamic Programming), Branch & Bound, 
Greedy, Iterative Dynamic Programming. 

 
b) Randomized Techniques: Iterative Improvement, Simu-

lated Annealing, 2PO (Two phase Optimization). 
  

c) Evolutionary Techniques: Genetic Algorithms, Multi ob-
jective Genetic Programming. 

 

2.2 Exhaustive Enumeration  

It is the most primitive technique, when used along some heu-
ristics to prune suboptimal plans is then called Dynamic Pro-
gramming Technique. This was the first approach in System R 
project of IBM and was later used for query optimization by 
most of DBMS vendors. Working in a bottom-up fashion it 

O 
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builds more complex sub-plans from earlier simple sub-plans 
until the completion of Plan. Access plans are build for every 
relation in the first phase and then algorithm enumerates all 
two way join plans using access plans as building blocks in the 
second phase. Third phase (finalizePlans) finalizes the plans by 
attaching the operations to make a complete plan. The func-
tion prunePlans helps in discarding suboptimal plans as early 
as possible. A brief outline of the general procedure is given 
below in figure 2.1.Distributed version does table scans at dif-
ferent sites and plan pruning is postponed till covering all 
sites. 
 
 Input: SPJ query q on Relations R1,R2,…, Rn. 

 Output: A query plan for q 
 for i=1 to n do 
  optPlan ({RI}) = accessPlans(Ri) 
  prunePlan(optPlan ({RI})) 
 endfor 
 for i=2 to n do 
  for all S  { R1,R2,…, Rn. } and    = I do 
   optPlan(S) =   
  for all O    do 
   optPlan(S) = opPlan(S)  joinPlans 
   (optPlan(O), optPlan(S-O)) 
   prunePlans (optPlan(S)) 
  endfor 
  endfor 
 endfor 
 finalizePlans(optPlan( { R1,R2,…, Rn })  
 prunePlans(optPlan( { R1,R2,…, Rn }) 
 return(optPlan( { R1,R2,…, Rn }) 
   

Figure 2.1DynamicProgramming Algorithm 
 
Dynamic programming outperforms other techniques for a 
small number of relations and fragments on different sites,up 
to 2-5 relations having 7-12 fragments on 3-5 sites. Beyond this 
when we suddenly increase number of fragments and sites, its 
computing time rises exponentially and soon goes practically 
intractable. 

2.3 Branch & Bound 

It represents allocation program by considering a search tree. 
Sub queries are represented by nodes and arcs give allocation 
of sites to these subqueries. Branch & Bound operates in depth 
first search of search tree and terminates a search path if it 
finds objective cost function exceeding the current minimum 
cost for a complete function [13].This algorithm is highlighted 
in Figure.2.2. 
Generate initial random allocation  A0 

   Cost(A0) 
     
      and                 
 Randomly choose first      
 Call Branch&Bound (A, C, U, i, M).  
 Branch&Bound (A, C, U, i, M) 
 for  each  j    do 
 if  CapUsed  +  CapRequired(i)  MaxCap(j)  and 
 J  SiteSet(i)  then  do 

              . 
 If               
        
                     
      If                               
       
       
  return. 
  end. 
  else do 
  Randomly choose new        
  Call Branch&Bound (A, C, U, i , M). 
  end. 
  end. 
     end. 
 end. 
 end Branch&Bound. 

 
 Figure 2.2: Branch&Bound Algorithm 

 
The variable A0 corresponds to an initial allocation of the sub-
queries uses to denote initial upper bound for the cost given 
by U.       denote costs, A denotes current partial allocation 
and M denotes current minimum cost allocation, both are 
empty initially.     denote nodes and j denotes a site whereas 
SiteSet(i) .The function CapRequired(i) returns the amount of 
capacity required by a site to be able to solve that query. The 
function         returns cange of cost effected by alternating 
site i and j. The function Allocate(i,j) does allocation of site j for 
subquery i . Cost associated with an allocation plan A is given 
by Cost(A) [4]. 
 B&B is a recursive procedure which allocates various 
different sites to all possible allocation enumerations, while 
keeping watch over restriction that cost does not increase over 
the current minimum. Then all possible enumerations from 
that point onwards are discarded. Its search space is shortened 
very effectively by this bounding function. It takes quite less 
time to find the minimal cost allocation as compared to Ex-
haustive Enumeration 
 

2.3  Simulated Annealing 

Simulated Annealing is a process analogous to the annealing 
of crystals, in which liquids are cooled very slowly at tempera-
tures nearing freezing point. Physical Annealing searches the 
space of all possible atomic arrangements for the state with a 
minimum possible energy. In general Optimization each state 
is replaced by a possible solution to the problem and energy is 
replaced by the cost of a suggested solution [4]. 
It is refinement of an earlier randomized algorithm  Iterative 
Improvement which suffered from premature findings of local 
cost minima, instead of finding a global minimum. This is 
achieved by allowing both downhill and uphill state changes, 
i.e. it allows the cost function to      decrease as well as in-
crease. The probability is set to      

   

 
 
, where    is the differ-

ence in cost in the source and destination. It is highlighted in 
Figure.2.3. 
 Calculate  T0 and    
 Generate a Random Initial Allocation A0 
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 Calculate  C      (A0) 
        and  A  A0  
 while T T0 
 while (P < k1 x |N|) and (R < k2 x |N|) 
 do 
  Generate a new Allocation     
  Calculate    
                       
  if        
                             

   

 
 
 

  then                       
  else        
  end. 
                   
 end. 
 

Figure 2.3: Simulated Annealing Algorithm 

3  GENETIC ALGORITHM  DESIGN 

3.1 Objective function formulation 

 Decision Variables and cost model 

Simulation starts with designing of a distributed database en-
vironment by assuming a set ‗S‘ of data distribution sites, a set 
‗R‘ of relations/fragments stored on those sites and a  Set ‗Q‘ 
representing a  set of transactions. 
We have assumed for simplicity of design that only retrieval 
queries are there. The model can be easily expanded to incor-
porate update queries. 
Let a query transaction ‗q‘ for retrieval, be broken into a set of 
‗j‘ sub queries on the ‗R‘ set of relations. 
 

(i)  Data Allocation Variable Ars : 
 

  Ars  = 1     (if  site ‗s‘ holds copy of fragment ‗r‘). 

  Ars  = 0     (if  ‗r‘ copy is not available at site‘s‘). 

 

(ii)  Variables for site selection for sub query execution Sqys : 

 Sqys :    ( represents sequence of sub query execution 

  at various sites in the life time of query). 

 Sqys = 1    (subquery ‗y‘ of Query ‗q‘ is done at site‘ s‘ ). 

 Sqys = 0    ( otherwise ). 

 

(iii) For Join operations a notation is proposed to handle left 

previous operation of a join  operation (LPO) & right  previous 

operation of  a join(RPO) as following: 

 

  Syv[p]S =  1 (for [p] = 1 for left previous operation of a Join ). 

  Syv[p]S = 1  (for [p] = 2 for right previous operation of a Join  

  Syv[p]S   =  0  otherwise. 

 

 (iv)  Iqry: represents whether the  sub query ‗y‘ of query ‗q‘ 

references the intermediate relation/fragment  ‗r‘. 

Iqry = 1   ( if  the base relation ‗r‘ or intermediate fragment ‗r‘ is 

   used by sub query ‗y‘ of ‗q‘ query). 

Iqry = 0   otherwise. 

 

v) For use of intermediate Relations by Join Operation 

 Iqryv[p] = 1  ( for LPO of join ‗y‘ ). 

I qryv[p] = 1  ( for RPO of join ‗y‘). 

 Iqryv[p] = 0  otherwise.   

By making use of above decision variables Operation Alloca-

tion Problem formulation is represented as :  

Given (Ars & Iqry ) : 

 A Transaction Profile, a Data Allocation Scheme 

represented by variable Ars, and  given   Iqry  intermediate 

relations/fragments is used by sub query y of query   q . 

To find (Sqys ):  

 We have an objective Function to calculate as to find  

Sqys which minimizes the objective function, which is cost of 

query. 

 

3.2  COST MODEL FORMULATION 

 

 Given a set of fragments    R = {r1,r2,…,rn}  

 Given a network of sites      S = {s1,s2,…,sm}  

Given  a set of sub queries  Q = {q1,q2,…,qq} 

Sub Query Allocation optimization problem involves finding 

the ―minimum  query cost‖ possible distribution of R to S. 

Ceri[12] gives a model for Total cost as Total Cost Function 

having two components: query processing and storage cost as  

 

 TOC = ∑ QPCi + ∑vs€S∑ vfj€F STCjk 

 

Where   QPCi   is query processing cost of application  qi  and   

STCjk   is the cost of storing fragment Fj at site Sk. 

We follow and modify this model  of  query cost as function of 

sum of local processing costs and transmission costs .We sim-

plify it further by ignoring update costs and ignoring concur-

rency control costs as we are giving model for retrieval trans-

actions(queries) only. Further concurrent retrievals don‘t im-

pose any more integrity control costs. Ceri's formulation  gives 

 

QPCi  =  LPCi  +  TCi ( LPC: Local Processing Cost) 

   ( TC : Communication  Cost ) 

  

 3.3 Local Processing Costs 

 

For Simple selection & projections 

LPCqy = ∑s Sqys(I OCs  ∑r IqryMqry  +  CPCs  ∑r IqryMqry)

        (1) 

Where Mqry = No. of memory blocks of relations ‗r‘ accessed 

by sub query ‗y‘ of  q. 

IOCs = Input Output Cost Coefficient of site s in msec per 8k 

bytes 

CPCs = CPU Cost coefficient of site s. 

So equation (1) represents local processing costs of transform-

ing input relation from disk to memory and CPU time 

processing a selection or projection at sites ‗s‘. 

Ceri's model didn‘t take care of join costs separately in detail. 

For that  we have extended his model to add join costs as fol-

lowing. 

 Local processing costs for a join 

LPCqy  =  ∑sSqysIOCs∑p∑rpsIqryv[p]Mq ryv[p]   
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      2(a) 

  +  

∑sSqys(IOCs∏rIqryMqry + CPCs∏rIqryMqry)   2(b) 

 

Where ‗ps‘ is Selectivity Factor & is referred as the ratio of 

possible  different values of a field to the  domain of that 

field.(0<= ps <=1) 

Mryv[p] is the size of intermediate relation  

where  v[p]  represents  p=1 for left previous operation of a 

join &   p=2  for right previous operation of a join. 

Equation 2(a) represents 

Input Output costs in storing intermediate results of previous 

operations to the site of current join operation. 

Equation 2(b) represents 

 CPU & I/O costs for performing join operations at site ‗s‘. 

 

3.4 Communication Costs: 

 These are involved mainly in case of join operations 

only as we have assured that selections & projections of re-

trievals are to be done only at sites which hold a copy of those 

base relations. Join may be performed at any of possible sites. 

COMMqy  =  ∑p ∑s ∑t  Sqyv[p]s  *   SqytCst (      qryv[p]   

    Mqryv[p]  ) 

Where Cst : is the communication cost coefficient bet -ween 

site t and s taken from input data matrix ) 

 Cst = 0 if (s = t)  ( i.e. previous operations and join  

   operation on same site ) 

If the final operation is not done at the query destination site 

then a communication component is added separately for 

sending the final query result to that site. 

 

4 DATABASE STATISTICS: 
 We consider a distributed database environment based on a 

Winconsin Database Benchmark Query (wq6). Structure of 

Tables and few example tuples are shown below: 

 

Table: Bi  (i varies from 1 to 7 for 7 Base Tables) 

Cardinality: 10,000, Tuple Size: 10 bytes, Table Size: 100 kB            

Block Size: 1Kb , Table Size = 100  Blocks , Number_of_sites = 

3 

4.1 Relation Bi 
 
 
 
 

 
 
 
 
 

 
 
 
Winconsin Database Benchmark Query (wq6). 
 

4.2 Query: wq6: 

   Unique( 2<Tens<9)B1):Х:   Unique( 2<Tens<9)B2):Х:    Unique( 2<Tens<9)B3) 
:Х:    Unique( 2<Tens<9)B4) :Х:(  Unique( 2<Tens<9)B5):Х:   Unique<Tens<9)B6)   
:Х:    Unique ( 2<Tens<9)B7 ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig: 4.1:Query Tree for WQ6 Query 

 

4.3 The Query Tree Description:  

 
No. Of Selections:  7 ( O1 – O7) 

No. Of Projections:  7 (O8-O14) 

No of Joins:   6 (O15 – O20 ) 

No. Of Operations:  10 (O1 – O21 ) (Tree Nodes) 

No. Of Fragments:  27 (Tree Edges) 

 

 4.4. Designing the Input Data File: Wq6.dat 

 
Here we explain some components of the input data file de-
sign to simulate a part of the problem domain.One may start 
by a text file  line like 

  

 5 27 21 which represents 
 Line1: Query Site is site number : 5 

 No of Base Relations :  27 

 No. Of  Operations :   21 

 

1 1 1 
Line2: I/O Coefficients of various sites 
1 1 1 
Line3: CPU  Coefficients 
 
Lines  4-6:Communication speeds between various   
0 1 1 pairs of  sites 

Unique             

(0– 9999) 

Twos      

(0 – 1) 

Tens      

(0-10) 

Hundreds       

(0 – 99) 

FiveHunds        

(0 – 499) 

Thousands       

(0 – 999) 

7 0 1 11 4 999 

111 1 4 2 3 4 

9998 1 9 4 444 111 

777 0 3 98 499 45 

10,000 

Tuples  

....... ...... ......... ...... ......etc 
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1 0 1 
1 1 0 
 
1 1 0 Lines 7-13: Base Relation Placements on sites 
0 0 1 Variable:  Ars :   Data Allocation Matrix 
1 1 0  e.g. This line represents that Relation  
0 0 1  B3  is available at sites S1 & S2  
1 1 0   
0 1 1 
1 0 0 
 
100 100 100 100 100 100 100 70 70 70 70 70 70 70 20 20 20 20 20 
20 20 40 40 40 40 40 100 
(Base & Intermediate Fragment‘s estimated Sizes in 
Kb(blocks)) 
 
Next 27 lines each representing whether a fragment f (1-27) is 
required by an operatio o(o1- o21): 
 
 
 
 ------------  Operations --------------->   
      1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
      0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0   
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

 

5. Flowchart for GA_SA Design 

 

Next shown is a flowchart for GA_SA working 

In fig.5.1. 
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maximum possible number of chromosomes in a popula-
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Fitness Function Ft(x) for each member and rank and sort 

in order of fitness 

 

Probabilistically Select two Parents from the operation 

allocation pool 

Add the new solution by removing the worst 

from poolb 

Breeding: Crossover the selected parent solutions and  then 

Mutate to generate a new solution to operation allocation 

pool and calculate its fitness 

Is Gen 

 < Max_Gen 

Is the new solu-
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Start 

Read Input Data file to set the Distributed  Database data 

allocation and Network  communication parameters 

 

Discard the 
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6. Genetic Algorithm Design: 
Pseudo code of the proposed Genetic Algorithm (GA_OA)  is as 
following:- 
Step 1:  
(a) Generate ‗n‘ random numbers between  integers ‗1‘ and ‗s‘ 
where  ‗s‘ is a  integer denoting the maximum no. of sites and ‗n‘ 
is the number of operations  to be performed. Generating one 
random possible plan. 
(b) Repeat step (a) for the total strength of the initial population. 
(c) Evaluate cost of each operation allocation plan using objective 
functions. 
Step 2:  
(a)  Iterate  through  number  of  generations to  be  generated. 
(b) Probabilistically select using roulette wheel method without 
replacement , the parents , with higher than average fitness get-
ting  more that one offspring in next generation. 
(c)  Apply crossover and mutation to produce new child execu-
tion plan  
(d)  The maximum fit member of the previous generation replace 
the worst member of new generation. 
(e) Evaluate the various fitness values for the entire generation. 
(f) Repeat steps (2a) to (2e) for maximum number of generations. 
 

6. Experimental Results: 

We run Genetic Algorithm GA_OA based on optimizing the 

earlier described objective function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
A deterministic procedure EXA_ENU is also coded which 

enumerates all possible combinations for 21 operation of 

query WQ6  to be done at various sites Si . We plot a graph 

between varying numbers of sites on x axis to time taken by 

computer to find optimal solution in seconds as y axis. It is 

also compared with Branch & Bound and Simulated Anneal-

ing Algorithm run times as given in [4], ans is shown in fig 6.1 

above. 

 
7  CONCLUSION 
 
In this paper an attempt has been made to highlight the main 
components of a stochastic simulation of a distributed query allo-
cation, using Genetic Algorithms. Design of query representation 
and input data file to the simulator is explained. Run Time com-
parison of GA_SA with other popular Operation Allocation tech-
niques is done as highlighted in a graph at Fig.6.1. GA_SA is the 
best choice possible when ‗number of sites‘ or complex opera-
tions like ‗joins‘ increase. Dynamic Programs or Randomized 
techniques like Simulated Annealing take far more time to find a 
good solution than a Genetic Solution like GA_SA. 
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Fig. 6.1. (Simulator ouput for Query: wq6) 
 
It highlights the fact that genetic algorithm takes much less 
time to find optimal solution for operation allocation of a distri-
buted query as compared to deterministic exhaustive proce-
dures or Branch&Bound, or Simulated Annealing Techniques. 
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